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It is shown that the Weyl fractional derivative can quantize an open system. A fractional kicked rotor is
studied in the framework of the fractional Schrödinger equation. The system is described by the non-Hermitian
Hamiltonian by virtue of the Weyl fractional derivative. Violation of space symmetry leads to acceleration of
the orbital momentum. Quantum localization saturates this acceleration, such that the average value of the
orbital momentum can be a direct current and the system behaves like a ratchet. The classical counterpart is a
nonlinear kicked rotor with absorbing boundary conditions.
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Application of fractional calculus to quantum processes is
a new approach to the study of fractional properties of quan-
tum phenomena �1–6�. In this Brief Report we consider
quantum chaotic dynamics of a fractional kicked rotor
�FKR�. The Hamiltonian of the system is

Ĥ = T̂ + � cos x �
n=−�

�

��t − n� , �1�

where � is the amplitude of the periodic perturbation which
is a train of � kicks. The kinetic part of the Hamiltonian is
modeled by the fractional Weyl derivative

T̂ = �− ih̃��W�/� , �2�

where h̃ is the dimensionless Planck constant, and �=2−�
with 0���1. When �=2 Eq. �1� is the quantum kicked

rotor �7�. For a periodic function f�x�=� f̄ ke
−ikx, the Fourier

transform property determines the fractional Weyl derivative
W� in the following simplest way �see �3�, Chap. 4.3�:

W�f�x� = �
n=−�

�

�− ik�� f̄ ke
−ikx. �3�

Since only periodic functions are considered here, this over-
simplified definition is sufficient without the burden of frac-
tional calculus details �8�. Thus, the kinetic term in the
Hamiltonian �1� is defined on the basis �k�=eikx /�2� as fol-
lows:

T̂�k� = T�k��k� =
�h̃k�2−�

2 − �
�k� . �4�

This non-Hermitian operator has complex eigenvalues for
k�0, which are defined on the complex plane with
a cut from 0 to −�, such that 1−�=1 and �−1�−�

=cos ��− i sin ��, and therefore k−�= �k�−�e−i���k�, where
��k�=��1−sgn�k�� /2 �9�. It is worth mentioning that the
fractional derivative in Eq. �2� appears naturally in quantum
lattice dynamics with long-range interaction �4�, where
�−ik�� is a particular case of a polylogarithm �see Appendix
in Ref. �4��.

A quantum map for the wave function 	�x , t� is

	�x,t + 1� = Û	�x,t� , �5�

where the evolution operator on the period

Û = exp	− i� cos x

h̃

exp	− iT̂

h̃

 �6�

describes free dissipative motion and then a kick. The dy-
namics of the FKR is studied numerically, where Eq. �4�
enables one to use the fast Fourier transform as an efficient
way to iterate the quantum map �5�. A specific property of
this Hamiltonian dynamics is quantum dissipation resulting
in probability leakage and described by the survival prob-
ability

P�t� = �	�t��	�t�� = �
n=−�

�

�fn�2, �7�

where �fn�2 is the probability of level occupation at time t.
The initial occupation is fn�t=0�=�n,0. Another specific char-
acteristic is the nonzero mean value of the orbital momen-
tum,

�p�t�� = h̃

�
n

n�fn�t��2

�
n

�fn�t��2
, �8�

due to the asymmetry of the quantum kinetic term T̂. Results
of the numerical study of the quantum map �5� are shown in
Figs. 1–4. The quantum dissipation leads to an asymmetrical
distribution of the level occupation �fn�t�� �see Fig. 1� that
results in a nonzero first moment of the orbital momentum
�p�� t
1 in Fig. 2. Quantum localization saturates the accel-
eration with time. This accelerator dynamics is accompanied
by the power law decay of the survival probability
P�t�� t−
2 with the exponent 
2
0.71 shown in Fig. 3, and
then the decay rate increases with time due to quantum ef-
fects. Quantum localization affects strongly both 
1 and 
2.

By increase of the quantum parameter, when h̃=0.76, the
exponent 
1 approaches zero �in Fig. 4 the slope is 10−5�, and
the survival probability decays at the rate 
2
0.99.

To understand the obtained numerical results and the
physical relevance of the fractional Schrödinger equation,
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the classical limit h̃→0 is performed in the Wigner represen-
tation. Thus, the system is described by the Wigner function
W�x , p , t� which is a c-number projection of the density ma-
trix in the Weyl rule of association between c numbers and
operators. The Weyl transformation of an arbitrary operator
function G�x̂ , p̂� is �10,11�

F�x,p� = Tr�G�x̂, p̂���x − x̂,p − p̂�� , �9�

where F�x , p� is a c-number function and ��x− x̂ , p− p̂� is a
projection operator which acts as a two-dimensional Fourier
transform. For the cylindrical phase space the projection op-
erator is �12�

��x − x̂,p − p̂� = �
m=−�

�
1

2�
�

−�

�

d� eim�x−x̂�+i��p−p̂�. �10�

This operator determines the inverse transform as well:

G�x̂, p̂� = �
k=−�

�
1

2�
�

−�

�

F�x, h̃k���x − x̂, h̃k − p̂� , �11�

where p= h̃k. The quantum map for the density matrix 
̂�t� is


̂�t + 1� = Û†
̂�t�Û . �12�

Therefore, evolution of the Wigner function

W�t,x,p� = Tr�
̂�t���x − x̂,p − p̂��

for the period determined by the map �12� is

FIG. 1. �Color online� Level occupation distribution �after 2000

iterations� for �=3, �=0.01, h̃=0.02.

FIG. 2. �Color online� Acceleration of the average orbital mo-
mentum for the same parameters as in Fig. 1. The inset is a log-log
plot, and the solid line corresponds to 
1=0.35 obtained by a least-
squares calculation.

FIG. 3. �Color online� Decay of the survival probability P�t�.
The inset is a log-log plot, and the solid line corresponds to

2=0.71 obtained by a least-squares calculation.

FIG. 4. �Color online� Quantum saturation of �p�t�� due to lo-

calization when h̃=0.76, �=0.05, and with the same � as in Figs.
1–3. The slope of the solid line is 10−5. The inset shows the power
law decay of P�t�� t−
2 with 
2
0.99 due to the linear
interpolation.
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W�t + 1,x,p� = Tr�Û†
̂�t�Û��x − x̂,p − p̂��

= �
k�=−�

� �
0

2�

Kh̃�x,p�x�,p��W�t,x�,p��dx�,

�13�

where Kh̃�x , p �x� , p�� is the Green’s function for the period,

Kh̃�x,p�x�,p��

= �
m

1

2�
�

−�

�

eim�x−x�+���ei���p�−p�

�exp	 i

h̃
T*�p + h̃m/2� −

i

h̃
T�p − h̃m/2�


�exp	 i�

h̃
cos�x� + h̃��/2� −

i�

h̃
cos�x� − h̃��/2�
 .

�14�

The trace is Tr�¯�=�k�k � ¯ �k�. In the classical limit h̃→0,
we obtain in Eq. �14� that the difference of the perturbations
in the exponential is −i� cos x, while the difference of the
kinetic terms is imp1−�� im��p� for p�0 and

−2 sin����T��p � � / h̃ for p�0. The last term diverges

at h̃=0 and yields identically zero for the Green’s function
Kh̃=0�p�0��0. Thus, the classical Green’s function

Kh̃=0�x,p�x�p�� = ��p��„x − x� − ��p�…��p − p� − � sin x��

�15�

corresponds to the classical map M,

pn+1 = pn + � sin xn, xn+1 = xn + ��pn+1� , �16�

of the nonlinear kicked rotor with the nonlinear frequency
��p�, and absorbing boundary conditions for p�0, which
the Heaviside function ��p� reflects.

Therefore, the fractional Hamiltonian �1� corresponds to
the open system Eqs. �15� and �16�. Chaotic dynamics of this
open system takes place in the upper half of the cylindrical
phase space. The stability property is determined by the trace
of the linearized map �M,

Tr��M� = 2 + ��1 − ��p−� cos x . �17�

For any � there are stable regions ��x ,�p� determined by the
locus of elliptic points �xe , pe� �see Fig. 5�

xe = arccos	−
2pe

�

��1 − ��

 . �18�

The presence of this infinite regular elliptic island structure,
which leads to the stickiness of chaotic trajectories �13�, also
results in the power law decay of the survival probability for
the quantum counterpart in Fig. 3. It should be stressed that
the nature of the power law decay of quantum long-time
dynamics differs from the classical one. On the Ehrenfest
time scale, when quantum dynamics is described approxi-
mately by the classical trajectories, the rate of the quantum

probability leakage is determined by the classical exponent
due to the classical stickiness phenomenon �14�. The situa-
tion changes essentially for long-time quantum dynamics;
namely, the power law decay of the survival probability,
which is shown in Fig. 3, is now due to the quantum tunnel-
ing between the integrable interior of the stability islands and
the chaotic sea. This power law phenomenon due to quantum
tunneling has been the subject of extensive studies in quan-
tum chaos �15�.

Quantum localization leads to the exponential restriction
of the initial profile spreading in the orbital momentum space
from above. This property results in saturation of the accel-
eration of �p�t��; namely, at t→� it follows that �p�t��
→const. Such a behavior is found for h̃=0.76 and �=0.05.
In Fig. 4 one sees a direct current of �p�t�� for 5�105 itera-
tions and K=3. This double impact of asymmetric absorption
and quantum localization leads, asymptotically, to a quan-
tumlike ratchet which differs from the quantum one obtained
on a classical chaotic attractor �16�.

It is worth mentioning that, in the class of periodic func-
tions, eigenvalues of the unperturbed Hamiltonian T coincide

with Ĥ0�p̂�= ��−ih̃�� /�x��, and have the same classical limit
of Eq. �15�. This local derivative has a classical counterpart
with the Hamiltonian H0�p�= p� which does not coincide
with Eq. �15�; namely, the Hamiltonian H0�p� is a classical
system with dissipation for p�0, while the map M in Eqs.
�15� and �16� is an open system where a particle is set apart
from the dynamics for p�0.

The fractional Schrödinger equation

ih̃�t	 = �− ih̃��W�	 �19�

describes quantum dissipative Hamiltonian dynamics. The
classical counterpart is a nonlinear motion with dispersion
��p� realized on the upper half plane of the phase space with
absorption in the lower half plane. It has well-defined physi-
cal meaning. Therefore, the fractional Schrödinger equation
�19� can be a generalized approach for any functions for

FIG. 5. �Color online� Phase portrait of the classical map with-
out absorption, after 20 000 iterations of 15 initial conditions for
�=3 and �=0.01.
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which the Fourier transform is valid. In this case, the oppo-
site classical-to-quantum transition can be performed by de-
termining the Heaviside function in Eq. �14�,

ei��p�z��p� = lim
h̃→0

exp� i

h̃
T*	p +

h̃z

2

 −

i

h̃
T	p −

h̃z

2

� ,

where T�p� is uniquely defined by the condition ��p�
=T��p�. Thus, fractional derivatives quantize classical open
systems in the framework of the non-Hermitian Hamilto-
nians. It is also worth mentioning complex scaling, which is
a powerful method for the treatment of divergences of wave

functions of systems with non-Hermitian Hamiltonians �17�.
The application of complex scaling to the fractional
Schrödinger equations is an interesting approach that will be
studied in future.
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